A. Prewysz-Kwinto

1282

7-Chloro-3-methyl-2-benzofuryl aryl ketones and a number of their derivatives were obtained by the Friedel-Crafts reaction from 7-chloro-3-methylbenzofu-rancarboxylic acid chloride and benzene or anisole.

We have previously described a method for obtaining formyl derivatives of benzofuran [1, 2]. The present research is devoted to the synthesis of previously undescribed aryl benzofuryl ketones. The starting 7-chloro-3-methylbenzofurancarboxylic acid chloride (I), which was obtained by the method in [3], was subjected to the Friedel-Crafts reaction with benzene and anisole, and 7-chloro-3-methyl-2-benzofuryl aryl ketones IIa, b were obtained. These compounds on bromination at the methyl group with N-bromosuccinimide give 7-chloro-3-bromomethyl-2-benzofuryl ketones IIIa, b, which were converted to 3-acetoxymethyl derivatives IVa, b. The hydrolysis of IVa, b led to 7-chloro-3-hydroxymethylbenzofuryl ketones Va, b, the oxidation of which by means of pyridine dichromate [4] gives 7-chloro-3-formyl-benzofuryl ketones VIa, b. The reaction of aldehydes VIa, b with hydrazine hydrate leads to condensed 6-chlorobenzofuryl[2,3,-d]pyridazines VIIa, b. In addition, 5-chlorothieno-[3,4-b]benzofurans VIIIa, b were obtained starting from IIIa, b.

II---VIII a $Ar = C_6H_5$, b $Ar = C_6H_4OCH_3 \cdot p$

EXPERIMENTAL

The PMR spectra of solutions of the compounds in $CDCl_3$ were recorded with a Tesla B-487 spectrometer (80 MHz) with hexamethyldisiloxane (HMDS) as the internal standard.

The characteristics of II-VIII are presented in Table 1.

<u>7-Chloro-3-methyl-2-benzofuryl Phenyl Ketone (IIa)</u>. A mixture of 4.6 g (20 mmoles) of furancarboxylic acid chloride I, 2.7 g (20 mmoles) of anhydrous $AlCl_3$, and 20 ml of benzene was refluxed with stirring for 5 h, after which it was cooled, and the resulting complex was decomposed by adding 25 ml of water and 2 ml of 5% HCl. The organic layer was separated, washed successively with two 25-ml portions of 10% NaHCO₃ solution and three 20-ml portions of water, dried over MgSO₄, and filtered. The filtrate was evaporated in vacuo, and the residue was crystallized from hexane. 7-Chloro-3-methyl-2-benzofuryl methoxyphenyl ketone (IIb) was similarly obtained starting from anisole.

<u>3-Bromomethyl-7-chloro-2-benzofuryl Phenyl Ketone (IIIa)</u>. A mixture of 2.7 g (10 mmoles) of IIa, 1.8 g (10 mmoles) of N-bromosuccinimide, 0.1 g of benzoyl peroxide, and 50 ml of CCl₄ was refluxed for 4 h. The precipitate was removed by filtration, the filtrate was evaporated in vacuo, and the product was crystallized from heptane. 3-Bromomethyl-7-chloro-2-benzofuryl methoxyphenyl ketone (IIIb) was similarly obtained.

Institute of Chemistry, N. Copernicus University, Torun, Poland 87-100. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1544-1546, November, 1988. Original article submitted December 22, 1987.

- Yield,		ç	9 2	74	73	96	06	97	93	76	68	72	67	72	74
Calc., %	ਰ		11.9	•	ļ	10,7	10.0	12,5	1.1	12,6	11,2	6,6	1'6	12.6	11,4
	н		4,0	2,9	3,3	4,1	4,2	3,9	4,2	3,1	3,4		3,6	31	3,4
	C		67,8	55,1	53,9	65,7	63,7	67,1	64,4	64,1	65.0	68,6	65,8	67 G	64,8
Empirical formula				C _{is} H _{in} BrCIO ₂	C ₁₇ H ₁₂ BrCIO ₃	C ₁₈ H ₁₃ ClO ₄	C ₁₉ H ₁₅ ClO ₅	CleH1CIO3	C17H13CIO4	ClieH ₉ CIO ₃	C ₁₇ H ₁₁ CIO4	ClieH ₉ CIN ₂ O	C ₁₇ H ₁₁ CIN ₂ O ₂	CH.CIOS	CI7H11C102S
مد	ਹ		13,1	•	1	10,8	6'6	12,4	11,2	12,5	11,3	10.0	0'6	12.5	11,5
Found,	Н		4,1 4,3	2,9	3,2	4,0	4,2	3.8 9	4,1	3,2	3,5	3,2	3,5	3.2	3,4
	υ	102	61,9	55,0	53,8	65,8	63,6	67,0	64,5	64.0	64,9	68,5	65,7	67.5	64,9
PMR spectrum, ppm (CDCl ₃) (without the protons of the benzene ring)							~						-		
PMR spectrum, opm (CDCl,) (without the protons of the	benzene ring)		2,60 (3H, s, CH ₃) 2,60 (3H, s, CH,), 3,85 (3H, s, OCH ₃)	5.10 (2H. S. CH.)	3.85 (3H, s' OCH,), 5,10 (2H, s, CH ₂)	2.10 (3H, s CH ₃), 5.50 (2H, s, CH ₂ O)	2.20 (3H.s, CH ₃), 3,80 (3H, s, OCH ₃), 5,40 (2H, s, CH ₂ O	3.70 (HL S, OH) 5.05 (2H S, CH ₂)	3.65 (IH. s. OH), 3.85 (3H. s. OCH.), 5.10 (2H. s. CH.)	10.50 (HI. s. CHO)	3.85 (3H. s. OCH.), 10.45 (1H. s. CHO)	8.407,80 (4H. m. arom.), 7,607,20 (5H. m. arom.)	3,85 (3H, s., OCH ₃), 7,207,55 (4H, m, arom.) 7,758,4	(4H, m, arom.) 7 90 8 25f0H m arom)	3,90 (3H, s, OCH ₃), 7,26, 8,30 (8H, m, arom.)
mp, °C PMR spectrum, ppm (CDCl ₃) (without the protons of the	benzene ring)		102103 2.60 (3H, s. CH ₃) 01 02 2.60 (3H s. CH,) 3.85 (3H. s. OCH ₃)	138 139 5.10 (2H. S. CH.)	106 107 3.85 (3H, s OCH,), 5,10 (2H, s, CH ₂)	105 106 2.10 (3H, s CH ₃), 5.50 (2H, s, CH ₂ O)	7980 2.20 (3H, z, CH ₃), 3,80 (3H, z, OCH ₃), 5,40 (2H, z, CH ₂ O	114 115 370 (IH.s. OH) 5.05 (2H. s. CH ₂)	82 83 3 365 (IH s, OH) 3.85 (3H s, OCH3) 5.10 (2H s, CH2)	132. 133 10.50 (1H s. CHO)	9899 3.85 (3H. s. OCH.). 10.45 (1H. s. CHO)	224225 840780 (4H.m. arom.), 7.607.20 (5H.m. arom.)	211. 213 3,85 (3H, s., OCH ₃), 7,20. 7,55 (4H, m, arom.) 7,75 8,4	70 00 7 90 8 25(0H m arom)	106107 3,90 (3H, s, OCH ₃), 7,25, 8,30 (8H, m, arom.)

.

TABLE 1. Characteristics of the Synthesized Compounds

<u>3-Acetoxymethyl-7-chloro-2-benzofuryl Phenyl Ketone (IVa)</u>. A mixture of 2 g (5.7 mmoles) of IIIa and 2 g (20 mmoles) of CH_3COOK in 40 ml of acetic acid was heated for 6 h, after which the mixture was concentrated, and 50 ml of water was added to it. The product was extracted with chloroform, and the extract was washed with two 25-ml portions of 10% Na_2CO_3 solution and water, dried over MgSO₄, and filtered. The filtrate was evaporated, and the product was crystallized from heptane. 3-Acetoxymethyl-7-chloro-2-benzofuryl methoxy-phenyl ketone (IVb) was similarly obtained.

<u>7-Chloro-3-hydroxymethyl-2-benzofuryl Phenyl Ketone (Va)</u>. A solution of 1.3 g (3.9 mmoles) of IVa in 50 ml of absolute ethanol and 1 ml of sulfuric acid was allowed to stand for 24 h at 20°C, after which the mixture was concentrated to a volume of 10 ml, and the resulting precipitate was extracted with four 20-ml portions of chloroform. The chloroform was removed by distillation, and the product was crystallized from hexane. 7-Chloro-3-hydroxymethyl-2-benzofuryl methoxyphenyl ketone (Vb) was similarly obtained.

<u>7-Chloro-3-formyl-2-benzofuryl Phenyl Ketone (VIa)</u>. A 1.2-g (5.6 mmoles) sample of pyridine dichromate was added in small portions to a mixture of 0.8 g (2.8 mmoles) of Va in 15 ml of methylene chloride, and the resulting mixture was stirred for 6 h at room temperature. Ether (50 ml) was then added, and the mixture was filtered. The filtrate was passed through a column packed with silica gel and evaporated, and the product was crystallized from hexane. 7-Chloro-3-formyl-2-benzofuryl methoxyphenyl ketone (VIb) was similarly obtained.

<u>6-Chloro-4-phenylbenzofuro[2,3-d]pyridazine (VIIa)</u>. A solution of 285 mg (1 mmole) of VIa, 100 mg (2 mmoles) of hydrazine hydrate, and 20 ml of ethanol was refluxed for 4 h, after which the solvent was evaporated, and the residue was crystallized from ethyl acetate. 6-Chloro-4-methoxyphenylbenzofuro[2,3-d]pyridazine (VIIb) was similarly obtained.

<u>5-Chloro-3-phenylthieno[3,4-b]benzofuran (VIIIa)</u>. A mixture of 520 mg (1.5 mmoles) of IIIa, 100 mg (1.5 mmoles) of thioacetamide, and 10 ml of ethanol was refluxed with stirring for 6 h, after which the solvent was evaporated, and the residue was crystallized from ethanol. 5-Chloro-3-methoxyphenylthieno[3,4-b]benzofuran (VIIIb) was similarly obtained.

LITERATURE CITED

- 1. A. Prewysz-Kwinto, J. Prakt. Chem., <u>325</u>, 501 (1983).
- 2. A. Prewysz-Kwinto, Khim. Geterotsikl. Soedin., No. 6, 756 (1987).
- 3. B. Sila and K. Seyda, Roczn. Chem., 44, 2025 (1970).
- 4. E. J. Corey and G. Schmidt, Tetrahedron Lett., No. 5, 399 (1972).